每日热闻!AI大模型如何加速无人驾驶发展?
近年来,无人驾驶发展驶入“快车道”,政策端传出利好消息,工信部明确表示支持L3级及更高级别的自动驾驶功能商业化应用。
同时,产业端也迎来利好,AI大模型或进一步加入无人驾驶的发展,具体来看AI从哪些方面赋能?
(资料图片仅供参考)
华泰证券在最新的报告中,对AI大模型赋能自动驾驶进行了详细剖析,分析指出AI大模型的引入(自动标注、感知预测算法的快速迭代),从行业整体层面可以加速高级别辅助驾驶的量产落地。
其次,智能驾驶板块后发者借助产业链优势(云端算力中心、通用开源模型的适配)与先发者在数据积累、模型迭代中的差距有望进一步缩小。
而受益于智能驾驶本土化的客观需求、产业链各环节国内供应商产品性能的提升与下游自主品牌的崛起,零部件国产替代趋势显著。
总结来看,华泰认为,今年或是城市NOA(领航辅助驾驶)普及的元年。当前旗舰车型高级别辅助驾驶BOM成本为1.4万元,预测2023-2030年高级别辅助驾驶BOM成本的平均年降幅度为11%。
提升数据采集、数据标注的效率
海量的数据是无人驾驶的基础,主要来自真实数据、虚拟仿真、影子模式,而下一步是则对数据进行识别、标注。
数据采集方面,华泰证券指出,大模型可以构建虚拟场景人工生成数据,补充现实中难以获得/数据量不足的情形。
数据标注方面,华泰证券指出,人工标注成本高、效率低,自动标注是AI大模型赋能智能驾驶最直接的应用,能大幅降低数据标注的成本。
以Meta的SAM为代表的图像分割大模型的出现可大幅降低数据标注的成本,该模型是有史以来最大的分割数据集。
优化感知-决策-执行三阶段算法
同样以考特斯拉FSD为例,华泰分析师黄乐平将自动驾驶模型算法按流程,分为感知识别道路和道路上物体)、预测(预测周围车辆和行人的行为)、执行(控制车辆速度方向等行动)三个阶段。
特斯拉、新势力等主要企业从几年前开始采用基于Transformer的大模型等新技术,1)提高道路、物体的识别精准度;2)学习人类的驾驶习惯(影子模式),3)缩短决策所需要的时间,从而训练模型更加“拟人”。
1、感知层面:OccupancyNetwork、3D建模
华泰证券指出,特斯拉创新性的提出了占用网络(OccupancyNetwork)模型,直接将3D空间点格化,相较于之前在障碍物识别和行驶路径预判方面有了明显提升,具体来看:
2、预测层面:道路拓扑关系预测、障碍物预测
华泰证券指出,预测分两种,一种是道路信息的预测,另一种是障碍物的预测。
3、决策层面:车端算力升级、模型计算效率优化,决策更加智能
决策的难点在于多方的交互与对路权的博弈,计算的效率是至关重要的。华泰证券表示:
目前业内普遍50-100毫秒之间完成一轮计算。受车端算力与计算效率的限制,目前决策层面的模型可分为两类:1)rulebase的模型(类似if程序,提前设定了某些情境下的反应机制);2)特斯拉的交互搜索的模型(querybase的条件下可缩短单次计算时间至100微秒)。
推动车端/云端算力升级与国产化
最后,受益于智能驾驶本土化的客观需求、产业链各环节国内供应商产品性能的提升与下游自主品牌的崛起,华泰证券认为零部件国产替代趋势显著。
随着大模型上车对车载算力需求的进一步提高,以及车载芯片制造商对芯片架构和技术的改进,车载芯片的算力有望持续上升。英伟达Thor芯片(2000TOPS)未来量产有望加速计算平台融合。
云端方面,基础设施算力升级加速算法迭代:
华泰证券展望未来3-5年AI赋能智能驾驶如何重塑出行方式,预计今年或是城市NOA普及的元年,高级别辅助驾驶将呈现降本趋势,2023-2030年高级别辅助驾驶BOM成本的平均年降幅度为11%。
本文节选自华泰证券《AI大模型如何加速无人驾驶发展》
分析师
黄乐平 SAC No. S0570521050001 SFC No. AUZ066
陈旭东 SAC No. S0570521070004 SFC No. BPH392
张宇 SAC No. S0570121090024 SFC No. BSF274
郭春杏 SAC No. S0570122010047 SFC No. BTP481